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Abstract—Data movement is a significant consumer of energy
in modern computer systems. To reduce these costs, recent work
has proposed architecting interconnects with asymmetric data
transmission costs, and developing encoding techniques to exploit
this asymmetry. Although promising, these encoding techniques
do not take full advantage of application level characteristics. As
an example of a missed optimization opportunity, consider the
case of computing a dot product as part of a neural network
inference task. The order in which the weights are fetched from
memory does not affect correctness, and can be optimized to
minimize data movement energy—an optimization that is not
possible on today’s systems.

This paper examines commutative data reordering (CDR), a
new technique that leverages the commutative property in linear
algebra to strategically select the lowest energy order in which
data can be transmitted. When applied to sparse matrix vector
multiplication, CDR reduces data movement energy by 21% over
existing encoding techniques, for a total reduction of 1.89x over
a baseline interconnect. These energy savings are achieved with
zero metadata or bandwidth overhead to support the reordering.
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I. INTRODUCTION

Data movement energy has become an increasingly im-
portant issue in modern system design. One recent analysis
showed that the cost of moving data 10mm on chip consumed
more than 10× the energy of a double precision floating point
operation [1]. Notably, the high cost of data movement applies
across a wide range of devices and platforms, from ultra-low
power internet of things processors to specialized machine
learning accelerators and GPUs with power consumptions in
the hundreds of watts. Thus, improvements in data movement
energy have the potential to provide benefits to a diverse set
of applications.

Due to this importance, a number of techniques to reduce
data movement energy have been proposed, both on and off
chip, and in a variety of architectures. These approaches archi-
tect the interconnects such that transmitting a 0 is significantly
less expensive than transmitting a 1. This asymmetry enables
encoding techniques that save energy by reducing the number
of 1s in a transmission. Interconnects with asymmetric data
transmission costs can be architected in two differet ways.
Terminated interconnects, found in the GDDR5/6 standard,
have a termination resistor that forms a direct path between

VDD and ground when transmitting a 1. Unterminated intercon-
nect, by contrast, consume energy primarily when the state
of the interconnect changes from a 0 to a 1 or vice versa.
In unterminated interconnects, transition signaling [2] can be
used to create the same asymmetric data transmission cost,
where 1s and 0s respectively are represented by the presence
or absence of a voltage transition on the wire.

Given an interconnect with asymmetric data transmission
costs, numerous encoding techniques proposed to reduce the
number of 1s in a transmission. Several of these techniques
exploit well known properties of data similarity and value
locality to encode data as the bitwise XOR between current
and previous transmissions [3], [4]. Although these techniques
show promise, they all share a similar limitation: the encod-
ings do not consider application level characteristics beyond
inherent data-similarity, blindly treating the data passing over
the interconnect as a stream of bits. To take advantage of
application level characteristics, we propose Commutative
data reordering (CDR).

II. COMMUTATIVE DATA REORDERING

Data similarity based encoding methods can be improved by
reordering the data stored in memory such that elements with
high similarity are fetched close together. Reordering does not
impact application correctness so long as the reordered data
has the commutative property (a + b = b + a). Importantly,
many parallel applications already rely on the commutative
property, since parallel execution on many systems does not
have strong ordering guarantees.

To understand the benefits of CDR, consider the
summation of a vector containing the binary values
(0001, 1111, 1110, 1001) where each value is transmitted over
a bus where 1s are more expensive than 0s. Without any en-
coding, the total cost of transmitting the values is proportional
to the sum of the hamming weights of each value, 10 in this
example. Alternatively, if the values are transmitted as bitwise
differences between successive vector elements, the vector is
transmitted as (0001, 1111⊕0001, 1111⊕1110, 1110⊕1001)
where ⊕ is the bitwise xor between two values. With this
bitwise difference encoding, the total hamming weight of
the transmission is 8, a 20% reduction. Since addition is
commutative, we can apply CDR to this vector, changing the
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Fig. 1. Reduction in transmitted 1s normalized to interconnect without encoding.

order to (0001, 1001, 1111, 1110) and transmit that vector with
bitwise difference encoding, for a total hamming weight of 5,
an additional 30% reduction over the unreordered data.

Although the example above uses summation, CDR can be
applied to other operations such as min, max, and dot prod-
ucts. For specificity, we consider matrix-vector multiplication
(MVM), an essential computational kernel in a variety of ap-
plications. MVM is also a very data movement intensive kernel
as the matrix, the part of the computation with the largest
memory footprint, has no reuse, requiring every element to be
fetched from off-chip memory at a high cost. The challenge
with applying CDR to MVM is that unlike the summation
example above, the commutative operation is the summation
over individual matrix-element vector-element products. For
example, consider a matrix row Ai being multiplied by a
vector x, where the dot product is yi =

∑
Ai,jxj . In this

example, if the elements of Ai are reordered, either the vector
x must be reordered in the same way for the entire matrix—
even if not all rows are best reordered in the same way—or
some metadata must be added such that elements of Ai can
be associated with the corresponding element of x.

Fortunately, sparse matrix operations already have this
meta-data embedded in the format. In sparse matrices, non-
zero values are stored as <data, coordinate> tuples so that
zeros can be ignored. Therefore, so long as the tuples are
reordered together, a sparse matrix can be rearranged without
extra metadata. This creates a significant opportunity since
sparse matrices are at the heart of many important problems,
including scientific computing, graph analytics, pruned neural
networks, and emerging simultaneous localization and map-
ping applications that are essential to augmented reality.

There are many sparse matrix formats available that attempt
to optimize for different architecture behavior and metadata
overheads. For specificity, consider the widely used com-
pressed sparse row (CSR) format, where each element is a
two-element tuple for the value and column with a separate
row pointer array that specifies the index where each row
starts. When applying CDR to a matrix stored in CSR format
the values within a single row can be freely reordered. The
reordering of elements can be modeled as an instance of the
widely studied traveling salesman problem (TSP) [5], where
each element is a node, and the edge weights are the hamming
distances between elements.

III. EVALUATION
We evaluate 12 sparse MVM workloads from a variety

of problem domains, making comparisons to the previously
published Base+XOR encoding technique [4]. The workloads
are run on GPGPU-Sim, modeling a GTX480 with GDDR5
memory. The first two workloads, AlexNet-DeepComp and
AlexNet-SkimCaffe, are inference operations using pre-trained
neural networks [6], [7]. The next ten sparse matrices are from
the SuiteSparse matrix collection [8]. The results, shown in
Figure 1, indicate and show that Base+XOR encoding alone
reduces the number of 1s transmitted over the memory inter-
face by 27%. CDR achieves an additional 21% reduction, for
a total improvement of 1.89× over the baseline interconnect.

IV. CONCLUSION
Previous work on encoding techniques to reduce data move-

ment energy have shown promising results; however, these
techniques do not leverage application level information. CDR
shows that by exploiting application characteristics, such as the
commutative property, the efficacy of data similarity based
encodings can be significantly improved. When applied to
sparse MVM, an important computational kernel in problem
domains from machine learning to computational fluid dy-
namics, CDR incurs no metadata overhead and provides an
additional 21% reduction in data movement energy. These
results show significant potential for additional application
level optimizations to reduce data movement energy.
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