
Enabling Scientific Computing on Memristive Accelerators

Ben Feinberg∗, Uday Kumar Reddy Vengalam∗, Nathan Whitehair∗, Shibo Wang† and Engin Ipek∗†
∗Department of Electrical and Computer Engineering

†Department of Computer Science
University of Rochester

Rochester, NY 14627 USA
∗{bfeinber, uvengala, nwhiteha}@ece.rochester.edu †{swang, ipek}@cs.rochester.edu

Abstract—Linear algebra is ubiquitous across virtually every
field of science and engineering, from climate modeling to
macroeconomics. This ubiquity makes linear algebra a prime
candidate for hardware acceleration, which can improve both
the run time and the energy efficiency of a wide range of
scientific applications. Recent work on memristive hardware
accelerators shows significant potential to speed up matrix-
vector multiplication (MVM), a critical linear algebra kernel
at the heart of neural network inference tasks. Regrettably,
the proposed hardware is constrained to a narrow range of
workloads: although the eight- to 16-bit computations afforded
by memristive MVM accelerators are acceptable for machine
learning, they are insufficient for scientific computing where
high-precision floating point is the norm.

This paper presents the first proposal to enable scientific
computing on memristive crossbars. Three techniques are
explored—reducing overheads by exploiting exponent range
locality, early termination of fixed-point computation, and
static operation scheduling—that together enable a fixed-point
memristive accelerator to perform high-precision floating point
without the exorbitant cost of naı̈ve floating-point emulation on
fixed-point hardware. A heterogeneous collection of crossbars
with varying sizes is proposed to efficiently handle sparse
matrices, and an algorithm for mapping the dense subblocks
of a sparse matrix to an appropriate set of crossbars is
investigated. The accelerator can be combined with existing
GPU-based systems to handle datasets that cannot be efficiently
handled by the memristive accelerator alone. The proposed
optimizations permit the memristive MVM concept to be
applied to a wide range of problem domains, respectively
improving the execution time and energy dissipation of sparse
linear solvers by 10.3x and 10.9x over a purely GPU-based
system.

Keywords-Accelerator Architectures; Resistive RAM.

I. INTRODUCTION

Computational models of dynamic systems are essential
to our understanding of the world across a diverse set
of problem domains, including high-energy physics [1],
weather and climate modeling [2], biology [3], and even
macroeconomics [4]. Achieving high fidelity using these
models often demands immense computing power, poten-
tially requiring thousands of nodes running over periods
of weeks or months [5]. Enabling future advances in these
problem domains requires significant improvements to com-
puting efficiency on frequently used kernels. One important

source of such kernels is linear algebra, which applies to
nearly every domain of science and engineering [6].

Recently, a new class of accelerators based on memristive
in-situ computation has been proposed [7]–[11]. These ac-
celerators show significant potential for speeding up matrix-
vector multiplication (MVM) in the context of connectionist
machine learning models, such as deep neural networks and
the Boltzmann Machine. Not only does in-situ MVM reduce
the rapidly increasing cost of data movement [12], but it
also allows for substantial parallelism by exploiting analog
computation. Although promising, existing memristive ac-
celerator proposals rely on the lax precision requirements of
machine learning workloads to side-step the issue of precise
computation, which makes these accelerators inapplicable to
scientific computing.

This paper shows that a memristive accelerator can be
architected to arbitrary precision requirements, preserving
significant performance and efficiency gains over a GPU
baseline while also meeting the particular needs of scien-
tific workloads. Three techniques are proposed to perform
floating-point computation with the same precision as IEEE-
754 on the fundamentally fixed-point hardware of a mem-
ristive crossbar: 1) the overhead of floating- to fixed-point
conversion is reduced by exploiting dynamic range locality;
2) each fixed-point computation is terminated as soon as the
precision requirements of IEEE-754 have been satisfied; and
3) operations are scheduled statically to compute only the
necessary bits. Although fixed-point emulation of floating
point is not a new concept, and is often used on systems
lacking floating-point hardware support [13], without the
proposed optimizations it imposes a prohibitive throughput
penalty on in-situ MVM.

This paper also addresses the problem of efficiently com-
puting sparse MVM on memristive crossbars. The matrices
generated by scientific applications are typically sparse [14].
Software optimizations that target sparse matrices have
been widely explored, and the literature contains numerous
solutions depending on the behavior of the underlying hard-
ware [15]. These techniques, however, are not applicable to
MVM performed using a memristive crossbar, because these
techniques rely on multiple levels of indirection that have
no direct analog in in-situ linear algebra. To meet this chal-

lenge, a novel heterogeneous hardware substrate comprising
crossbars with different sizes is proposed. A preprocessing
step maps the dense subblocks within a sparse matrix onto
the proposed substrate by exploiting the interlocking trade-
offs among crossbar size, throughput, matrix density, and
blocking efficiency.

The proposed techniques combine with existing GPU-
based approaches to accelerating high performance lin-
ear algebra. Some matrices—due to their sparsity pat-
terns—cannot be mapped efficiently to even a heterogeneous
substrate during the preprocessing step; in those rare cases,
the computation is performed on a GPU instead. Notably, the
choice between the accelerator and the GPU can be made
quickly, based on the output of the preprocessing step.

The proposed system is evaluated on two high-
performance iterative solvers with a set of 20 input matrices
from the SuiteSparse collection [14], representing problem
domains within computational fluid dynamics, structural
analysis, circuit analysis, and seven others. Taken together,
the proposed techniques improve the execution time by
10.3× and reduce the energy consumption by 10.9× over a
conventional GPU platform.

II. BACKGROUND

The proposed accelerator builds upon prior work on
memristive accelerators for machine learning, and linear
algebra for scientific computing.

A. Memristive Accelerators for Machine Learning and
Graph Processing

The increasing prominence of machine learning work-
loads in recent years has led to many proposals for dedicated
machine learning accelerators, both in academia [16] and
industry [17]. These accelerators focus on the MVM opera-
tion as the primary kernel in connectionist machine learning
models. More recently, a new class of MVM accelerators
has been proposed that exploits the inherent parallelism
of analog computation to perform MVM with memristive
networks [7]–[11], [18]. Conceptually, a matrix is mapped
onto a memristive crossbar such that the conductance of
each crossbar cell is proportional to the corresponding matrix
coefficient. For instance, in a binary matrix, 0s and 1s are
respectively encoded as the low and high conductance states
of the memristive devices. With these values mapped, a dot
product operation is performed by applying voltages to each
row, and quantizing the output current at the columns1, as
shown in Figure 1. Given a memristor at the intersection of
row i and column j with resistance Ri,j , and row voltage
Vi, the current through the memristor is Vi/Ri,j ; the total
current flowing through the column is

∑
i Vi/Ri,j , which

1When describing hardware, we use the memory systems convention for
the terms column and row, i.e., the rows of a matrix are mapped to the
columns of the crossbars. To minimize confusion, we explicitly refer to
rows within a matrix as ”matrix rows.”

ADC Array

Li
ne

 D
riv

er
s

V1

VN

R1,N

Reduction
Network

Current

Figure 1. A conceptual example of memristive crossbars for computation.

is proportional to the dot product of the voltages and the
conductances.

This conceptual example, however, assumes high-
precision analog circuits and many-bit memristive devices,
both of which incur substantial overheads. To reduce these
overheads, prior work has employed bit slicing, a technique
to map each element of a matrix to multiple crossbars,
reducing the required memristor resolution [7]–[10]. An
example of bit slicing is shown in Equation 1, where
each 3-bit matrix coefficient is mapped onto three binary
crossbars. Note that while this example uses single-bit cells,
the technique can be generalized to multi-bit cells.

[
3 1
6 5

]
= 22

[
0 0
1 1

]
+ 21

[
1 0
1 0

]
+ 20

[
1 1
0 1

]
(1)

To perform computation on the full operand, the partial
dot products from all of the bit slices are combined through
a shift-and-add reduction network [7], [8]; an example is
shown on the right hand side of Figure 1. The same bit
slicing technique is applied to the vector as well as the
matrix.

B. High-Performance Linear Algebra for Scientific
Computing

Complex physical models are often described by sys-
tems of partial differential equations (PDEs). There are no
known methods for finding analytical solutions to general
systems of PDEs. Thus, these continuous PDEs are typically
discretized into a system of linear equations, Ax = b,
representing a mesh of points that approximate the original
model [19]. The resulting system of linear equations is often
sparse; that is, most of the variables have zero contribution
to most of the linear equations. Conceptually, this sparsity
is a result of the locality inherent in the physical system.
Variables in each linear equation represent the relationship
between given points in the discretized mesh, and nearby
points tend to have stronger relationships.

A sparse linear system can be solved using either direct or
iterative methods. Direct methods include factorizations such

as LU or Cholesky, as implemented in the High Performance
LINPACK benchmark [20]. These direct methods can result
in significant fill-in, where zero entries become non-zeroes;
this increases the memory footprint and reduces the benefits
of storing the matrix in a sparse format. Iterative methods,
by contrast, do not involve modifying the underlying matrix.
This results in significantly lower memory requirements,
enabling the full sparse matrix to fit in memory whereas
a sparse version with significant fill-in might not.

Iterative methods are subdivided into stationary and
Krylov subspace methods. We focus on the latter since they
are the primary methods used today [19]. Krylov subspace
methods iteratively improve an estimated solution x̂ to
the linear system Ax = b. These methods are typically
implemented using a stopping tolerance, ε, and terminate
when |b − Ax̂| < ε. There are many Krylov subspace
solvers with different behaviors depending on the matrix
structure, including conjugate gradient (CG) for symmetric
positive definite matrices (SPD) [21], as well as BiConjugate
Gradient (BiCG), Stabilized BiCG (BiCG-STAB) [22], and
Generalized Minimal Residual [23] for non-SPD matrices.

Due to the importance of PDEs and the wide appli-
cability of sparse solvers, a number of accelerator sys-
tems leveraging FPGAs and ASICs have been proposed.
Kung et al. [24] propose an SRAM based processing in
memory accelerator for simulating systems of differential
equations. The accelerator uses 32-bit fixed-point, and does
not meet the high-precision floating-point requirements of
mainstream scientific applications (a key focus of our work).
Additionally, Kung et al. accelerates the cellular nonlinear
network model, which differs significantly from mainstream
methods for solving PDEs. By contrast, we target widely
accepted iterative solvers such as CG. Zhu et al. [25]
discuss a graph processing accelerator that leverages content
addressable memories (CAMs). This accelerator may be
applicable to sparse MVM; however, the proposed hardware
heavily depends on the sparsity of the input vector (less
than 1% non-zeros) to limit CAM size. This vector sparsity
is uncommon in iterative solvers: an analysis of the linear
systems that we evaluate show vector densities ranging from
30-100%, which would result in prohibitive CAM overheads.
Kestur et al. [26] and Fowers et al. [27] propose FPGA based
accelerators that target sparse MVM for iterative solvers;
however, the proposed approaches do not outperform a
GPU. Dorrance et al. [28] propose an FPGA accelerator
that achieves an average speedup of 1.28× over a GTX
TITAN GPU on single-precision sparse MVM; however, it
is not clear how the FPGA would scale to double-precision.
By contrast, the proposed memristive accelerator achieves
an average speedup of 10.3× over a Tesla P100 GPU on
double-precision sparse MVM.

Bank 2

Bank N
...

G
lobal M

em
ory

Bank 1

Cluster 2
Cluster N

...

Cluster 1
Xbar

Xbar

... De-
bias ECU FPCU Result

Buffer

Unblocked Matrix Elements

Aligned
Fixed Point

Signed
Fixed Point

Corrected
Fixed Point

Intermediate
Floating Point

IEEE-754
Floating Point

Input Vector Buffer

Processor

Figure 2. System overview.

III. SYSTEM ORGANIZATION

The accelerator is organized in a hierarchy of banks
and clusters as shown in Figure 2. Each bank comprises
a heterogeneous set of clusters with different crossbar sizes,
as well as a local processor that orchestrates computation
and performs the operations not handled by the crossbars.
Within a cluster, a group of crossbars perform sparse MVM
on a fixed-size matrix block.

A. Banks

Unlike prior work on memristive accelerators [7], [8], the
clusters within each bank are of different sizes. This allows
the system to capture dense patterns within sparse matrices,
as discussed in Section V. With sparse matrices, some
elements are ill-suited to the memristive crossbars, either
because the elements do not block efficiently, or because
the computation requires more bits than are provided by a
cluster. In either case, the value is not mapped to a cluster
and is instead handled by the local processor. Finally, cross-
bank communication (for operations that require resources
from multiple banks) is implemented through reads and
writes to global memory.

To interface with the local processor, every cluster con-
tains two memory-mapped SRAM buffers: an incoming
vector buffer, and a result buffer. The incoming vector buffer
holds the vector to be multiplied by the matrix in floating-
point format, and extracts the bit slices from the vector as
needed. The partial result buffer holds the running sum of the
partial dot products in an intermediate floating-point format.
Once the computation on a block completes, each scalar
in the partial result buffer is converted to a final IEEE-754
representation, which is read by the local processor.

B. Clusters

A cluster comprises a set of crossbars—similar to the
mats in the Memristive Boltzmann Machine [7], or the in-
situ multiply accumulate (IMA) units in ISAAC [8]—that
perform MVM and reduction across all of the bit slices

within a single matrix block. Unlike prior work, clusters
are designed for IEEE-754 compatible double-precision
floating-point computation. Each cluster contains 127 cross-
bars with single-bit cells that are organized in a shift-
and-add reduction tree. The double-precision floating-point
coefficients of a matrix block are converted to 118-bit fixed-
point operands comprising a 53-bit mantissa, one sign bit,
and up to 64 bits of padding for mantissa alignment. This
118-bit value is then encoded with a nine-bit error-correcting
AN code (as proposed in [29]) for a full operand width of
up to 127 bits.

Figure 3 shows the structure of the crossbars in a cluster
and how computation proceeds. Initially, a vector bit slice
x[i] is applied to all of the crossbars within a cluster, and
the resulting dot product for each crossbar column is latched
by a sample-and-hold circuit (1).2 A set of ADCs (one
per crossbar) then start scanning the values latched by the
sample-and-hold units (2). The outputs of the ADCs are
propagated through a shift-and-add reduction network (3),
producing a single fixed-point value that corresponds to the
dot product between a row of the matrix A and a single bit
slice of the vector x. The system is pipelined such that every
cycle, a single fixed-point value is produced by the reduction
network, and after every column has been quantized, a new
vector bit slice is applied to all of the crossbars.

Once the fixed-point result has been computed, three
additional operations are performed to convert it to an
intermediate floating-point representation (Figure 2). First,
the bias is removed, converting the value from unsigned
to signed fixed point. Second, error correction is applied.
Third, the running sum for the relevant vector element is
loaded from the partial result buffer, the incoming partial
dot product is added to the running sum, and the result
is written back. After the running sum is read from the
partial result buffer, it is inspected to determine whether the
precision requirements of IEEE-754 have been met (in which
case, no further vector bit slice computations are needed).
If so, all of the crossbars in the cluster are signaled to skip
quantizing the corresponding column in the remaining vector
bit slice calculations.3 The criteria for establishing whether
the precision requirements of IEEE-754 have been met are
discussed in the next section.

IV. ACHIEVING HIGH PRECISION

Unlike machine learning applications, scientific workloads
require high precision [30]. To enable scientific computing
with memristive accelerators, the system must meet these
precision requirements through floating-point format support
and error correction.

2Throughout the paper, we use xj [i] to refer to the jth coefficient of
the ith bit slice of vector x.

3The total number vector bit slices is still bounded by the number of
vector bit slices required by the worst case column.

1

2

3

S/H Array S/H Array S/H Array

ADC ADC ADC

Figure 3. Cluster organization.

A. Floating-Point Computation on Fixed-Point Hardware

In double precision floating point, every number is repre-
sented by a 53-bit mantissa (including the implied leading
1), an 11-bit exponent, and a sign bit [31]. When performing
addition in a floating-point representation, the mantissas of
the values must be aligned so that the bits of the same
magnitude can be added. Consider as an example two base-
ten floating-point numbers with two-digit mantissas, on
which the computation 1.2 + 0.13 is to be performed. To
properly compute the sum, the values must be aligned based
on the decimal point, 1.20+0.13. In a conventional floating-
point unit, this alignment is performed dynamically based on
the exponent field of each value. On a memristive crossbar,
however, since the addition occurs within the analog domain,
the values must be converted to an aligned fixed-point
format before they are programmed into the crossbar. This
requires padding the floating point mantissas with zeros; in
the example above, the addition would be represented as
120 + 013 in fixed point, with an exponent of 10−2.

Although this simple padding approach allows fixed-point
hardware to perform floating-point operations, it comes at
a significant cost. In double-precision, for instance, naı̈ve
padding requires 2100 bits in the worst case to fully account
for the exponent range: 2046 bits for padding, 53 bits for the
mantissa itself, and one sign bit. Not only is this requirement
prohibitive from a storage perspective, but full fixed-point
computation would require multiplying each matrix bit slice
by each vector bit slice for a worst case of 4.4 million
crossbar operations. Fortunately, two important properties of
floating-point numbers can be exploited to reduce the cost
of the fixed-point computation. First, while the IEEE-754
standard provides 11 bits for the exponent in double preci-
sion, few applications ever approach the full exponent range.
Second, the naı̈ve fixed-point computation described above
provides more precision than IEEE-754, as it computes bits
well beyond the 53-bit mantissa. These extraneous values are
subsequently truncated when the result is converted back to
floating point.

0110011001

010101

+ . . .

010111010

100101

+ . . .

000101

010110

011001

001000

+ . . .

01101000111

111010

+ . . .

0 0 0

(a) Initial partial product
summation

Running Sum

(b) Sum of four partial
products

(c) No overlap with partial
product

(d) Addition
can terminate

Figure 4. Illustrative example of partial product summation: a) addition of the first four partial products; b) overlap between the running sum and the
mantissa; c) carries can still modify the running sum; d) the mantissa bits are settled.

B. Avoiding Extraneous Calculations

Three techniques are proposed to reduce the cost of
performing floating-point computation on fixed-point
hardware.

Exploiting exponent range locality. The 11-bit exponent
field specified by IEEE-754 means that the dynamic range
of floating-point values is 22

11−2 (two exponent fields are
reserved for special values), or approximately 10616. (For
comparison, the size of the state space for the game of
Go is only 10172 [32].) IEEE-754 provides this range so
that applications from a wide variety of domains can use
floating-point values without additional scaling; however,
it is highly unlikely that any model of a physical system
will have a dynamic range requirement close to 10616. In
practice, the number of required pad bits is equal to the
difference between the minimum and maximum exponents
in the matrix, and can be covered by a few hundred bits
rather than 2046. Furthermore, since the fixed-point over-
head is required only for numbers that are to be summed in
the analog domain, the alignment overhead can be further
reduced by exploiting locality. Since the matrix is much
larger than a single crossbar, it is necessarily split into blocks
(discussed in Section V-B1); only those values within the
same block are added in the analog domain and require
alignment. The matrices can be expected to exhibit locality
because they often come from physical systems where a
large dynamic range between neighboring points is unlikely.

The aforementioned alignment procedure is also applied
to the vector to be multiplied by the matrix. The alignment
of mantissas encodes the exponent of each vector element
relative to a single exponent assigned to the vector as a
whole. Notably, multiplication does not require alignment
since it is sufficient to add the relevant exponents of the
matrix block, the vector, and the exponent offset implied
by the location of the leading 1 in each dot product.

Early termination. In a conventional double-precision float-
ing point unit (FPU), each arithmetic operation is performed

on two operands, after which the resulting mantissa is
rounded and truncated to 53 bits. To compute a dot product
between two vectors, a · x, the FPU first calculates the
product of two scalars, a1x1, rounds and truncates the result
to 53 bits, and adds the truncated product to subsequent
products: a · x = a1x1 + a2x2 + · · · . A memristive MVM
accelerator, on the other hand, computes a dot product as an
aggregation of partial dot products calculated over multiple
bit slices. This necessitates a truncation strategy different
from that of a digital FPU.

A naı̈ve approach to truncation on a memristive MVM
accelerator would be to perform all of the bit sliced matrix-
vector multiplications, aggregate the partial dot products,
and truncate the result. This naı̈ve approach would require
a total of 127 × 127 crossbar operations, since every bit
slice of a must be multiplied by every bit slice of x. 4

However, many of these operations would contribute only to
the portion of the mantissa beyond the point of truncation,
wasting time and energy. By detecting the position of the
leading 1—i.e., the 1 at the most significant bit position in
the final result—the computation can be safely terminated
as soon as the 52 following bits of the mantissa have settled.

Consider the simplified example depicted in Figure 4, in
which a series of partial products with different bit-slice
weights are to be added (a). To clarify the exposition, the ex-
ample assumes that the partial products are six bits wide, and
that the final sum is to be represented by a four-bit mantissa
and an exponent. (The actual crossbars sum 127-bit partial
products, encoding the result with a 53-bit mantissa and an
exponent.) In the example, the addition of partial products
proceeds iteratively from the most significant partial product
toward the least significant, accumulating the result in a
running sum. The goal is to determine whether this iterative
process can be terminated early while still producing the
same mantissa as the naı̈ve approach.

Figure 4b shows the running sum after the summation
of the four most significant partial products. Since the next

4Recall from Section III that scalars are encoded with up to 127-bit
fixed point. All examples in this section assume a 127-bit representation
for simplicity, unless otherwise noted.

Stable
Region

X … X

Potential carry out

+

Barrier
Bit

0

Carry
Region

Aligned
Region

X ... X 0
X ... X X

1 … 1 X Running sum

Next partial dot
product

Figure 5. Regions within a running sum.

partial product still overlaps with the four-bit mantissa, it is
still possible for the mantissa to be affected by subsequent
additions. At a minimum, the computation must proceed
until the mantissa in the running sum has cleared the overlap
with the next partial product. This occurs in Figure 4c;
however, at that point, it is still possible for a carry from the
subsequent partial products to propagate into and modify the
mantissa. Notably, if the accumulation is halted at any point,
the sum of the remaining partial products would produce at
most one carry out into the running sum. Hence, in addition
to clearing the overlap, safe termination requires that a 0
less significant than the mantissa be generated, such that it
will absorb the single potential carry out, preventing any bit
flips within the mantissa (Figure 4d).

At any given time, the running sum can be split into
four non-overlapping regions, as shown in Figure 5. The
aligned region is the portion of the running sum that
overlaps with the subsequent partial products. A chain of
1s more significant than the aligned region is called the
carry region as it can propagate the single generated carry
out forward. This carry, if present, is absorbed by a barrier
bit, protecting the more significant bits in the stable region
from bit flips. Thus, the running sum calculation can
be terminated without loss of mantissa precision as
soon as the full mantissa is contained in the stable region.

Scheduling array activations. Even with the early termina-
tion technique discussed above, there is still a possibility for
extraneous crossbar operations to be performed. Although
each partial dot product takes up to 127 bits, the final
mantissa is truncated to 52 bits following the leading 1,
requiring fewer than 127 bits to be computed in most cases.
Therefore, some subset of the 127-bit partial dot product
may be wasted depending on the schedule according to
which vector bit slices are applied to the crossbars.

Figure 6 shows three approaches to scheduling the cross-
bar activations. In the figure, rows and columns respec-
tively represent the matrix and vector bit slices, sorted
by significance. The numbers at the intersection of each
row and column represent the significance of the resulting
partial product. Different groupings indicate which bit-sliced
matrix-vector multiplications are scheduled to occur simul-
taneously; the black colored groupings must be performed,
whereas the gray colored groupings may be skipped due
to early termination. Hence, the number of black groupings

1 0123

1

023

4

5

3 24 1

6 5

4

3

4

3

2

3

2

6

5

4

5

4

3

4

3

2

3

2

1

3 2 1 0

6

5

3

5

4

2

4

3

1

3

2

0

3 2 1 0

3

2

1

0

M
at

rix
 S

lic
e

3 2 1 0
Vector Slice

Activations Skipped Activations Performed
Vertical Grouping Diagonal Grouping Hybrid Grouping

Figure 6. Three policies for scheduling crossbar activations.

correlates with execution time, and the number of crossbars
enclosed by the black groupings correlates with crossbar
activation energy. The example shown in the figure assumes
that the calculation can be terminated early, after the fifth
most significant bit of the mantissa is computed. (That is,
all groupings computing a partial product with significance
of at least 2 must be performed.)

In the leftmost case, all of the crossbars are activated with
the same vector bit slice, after which the next significant
vector bit slice is applied to the crossbars. This naı̈ve vertical
grouping requires 16 crossbar activations, performed over
four time steps. In the next example, arrays are activated
with different vector bit slices, such that each active array
is contributing to the same slice of the output vector si-
multaneously. This diagonal grouping results in 13 crossbar
activations—the minimum required in the example—over
five time steps. In general, this policy takes the minimum
number of crossbar activations, at the cost of additional
latency.

The hybrid grouping shown on the right, which we adopt
in the evaluation, strikes a balance between the respective
energy and latency advantages of the diagonal and vertical
groupings. The result is 14 crossbar activations performed
over four time steps. The more closely the hybrid grouping
approximates a diagonal grouping, the greater the energy
savings at the cost of latency.

Taken together, the above techniques significantly reduce
the overhead of performing floating-point computation on
fixed-point hardware by restricting computations to only
those that are likely to produce a bit needed for the final
mantissa. The techniques render the latency and energy
consumption strongly data dependent, effectively forming a
data-specific subset of the floating point format without any
loss in precision.

C. Handling Negative Numbers

The previously proposed ISAAC memristive accelera-
tor [8] uses a biasing scheme to handle negative numbers.
The approach adds a bias of 216 to each 16-bit operand,
such that the values range from 0 to 216 rather than ±215.
Results are de-biased by subtracting 216pv , where pv is the
population count (i.e., the number of bits set to 1) of the
relevant bit slice of the vector. We adopt this technique with

one modification: in place of the constant 216, we use a
per-block biasing constant based on the actual floating-point
exponent range contained within the block.

D. Floating Point Anomalies and Rounding Modes

The IEEE-754 floating point standard specifies a number
of floating point exceptions and rounding modes that must
be handled correctly for proper operation [31].

Rounding modes. When the proposed accelerator is
operated in its typical configuration, mantissa alignment
and leading 1 detection result in a truncation of the result
to the required precision. The potential contributions of
any uncalculated bits beyond the least-significant bit would
only result in a mantissa of greater magnitude than what
is ultimately obtained, and since a biasing scheme is used
to enable the representation of negative values (Section
IV-C), the truncation is equivalent to rounding the result
of a dot product toward negative infinity. For applications
requiring other rounding modes (e.g., to nearest, toward
positive infinity, toward zero), the accelerator can be
configured to compute three additional settled bits before
truncation, and perform the rounding according to those bits.

Infinities and NaNs. Signed infinities and not-a-numbers
(NaNs) are valid floating point values; however, they cannot
be mapped to the crossbars in a meaningful way in the
proposed accelerator, nor can they be included in any dot
product computations without producing a NaN, infinity, or
invalid result [31]. Therefore, the accelerator requires all
input matrices and vectors to contain no infinities or NaNs,
and any infinities or NaNs arising from an intermediate
computation in the local processor are handled there to
prevent them from propagating to the resulting dot product.

Floating point exceptions. Operations with floating point
values may generally lead to underflow, overflow, invalid
operation, and inexact exceptions [31]. Since in-situ dot
products are performed on mantissas aligned with respect to
relative exponents, there are no upper or lower bounds on
resulting values. (Only the range of exponents is bounded.)
This precludes the possibility of an overflow or underflow
occurring while values are in an intermediate representation.
However, when the result of a dot product is converted from
the intermediate floating point representation into IEEE-754,
it is possible that the required exponent will be outside
of the available range. In this case, the exponent field of
the resulting value will be respectively set to all 1s or
all 0s for overflow and underflow conditions. Similarly to
CUDA, computations resulting in an overflow, underflow,
or inexact arithmetic do not cause a trap [33]. Since the
accelerator can only accept matrices and input vectors with
finite numerical values, and since the memristive substrate
is used only for computing dot products, invalid operations

(e.g., 0 / 0,
√
−|c|) and operations resulting in NaNs or

infinities can only occur within the local processor, where
they are handled through an IEEE-754 compliant floating
point unit.

E. Detecting and Correcting Errors

Prior work by Feinberg et al. proposes an error-correction
scheme for memristive neural network accelerators based on
AN codes [29]. We adopt this scheme with three modifi-
cations, taking into consideration the differences between
neural networks and scientific computing. First, as noted in
Section I, scientific computing has higher precision require-
ments than neural networks; thus, the proposed accelera-
tor uses only 1-bit cells, making it more robust. Second,
the matrices for scientific computing are typically sparse,
whereas the matrices in neural networks tend to be dense;
this leads to lower error rates using the RTN-based error
model of Feinberg et al., allowing errors to be corrected with
greater than 99.99% accuracy. However, the use of arrays
larger than used in prior work introduces new sources of
error. If the array size is comparable to the dynamic range
of the memristors, the non-zero current in the RHI state
may cause errors when multiplying a low density matrix
row with a high density vector. To avert this problem, we
limit the maximum crossbar block size in a bank (discussed
in the next section) to 512×512, with a memristor dynamic
range of 1.5× 103. Third, since the floating-point operands
expand to as many as 118 bits during the conversion from
floating- to fixed point, we do not use multi-operand coding,
but rather apply an A = 251 code that protects a 118-
bit operand with eight bits for correction and one bit for
detection. The correction is applied after the reduction but
before the leading-one detection.

V. HANDLING AND EXPLOITING SPARSITY

An in-situ MVM system has an inherent advantage when
performing computation with large and dense matrices, as
the degree of parallelism obtained by computing in the
analog domain is proportional to the number of elements
in the matrix, up to the size of the matrix, M × N . As
noted in Section II-B, however, the majority of the matrices
of interest are sparse. This reduces the effective parallelism,
making it a challenge to achieve high throughput.

A. Tradeoffs in Crossbar Sizing

The potential performance of a memristive MVM system
is constrained by the sizes of its crossbars: as crossbar size
increases, so does the peak throughput of the system. This
peak is rarely achieved, however, since the sparsity pattern
of each matrix also limits the number of elements that may
be mapped to a given block.

We define the throughput of the system as the number of
effective element-wise operations in a single-cluster MVM
computation divided by the latency of that computation,

τ
MV M

. As the size of a crossbar increases, greater throughput
is naı̈vely implied, since the size of the matrix block repre-
sentable within the crossbar—and, consequently, the number
of sums-of-products resulting from a cluster operation—also
increases. However, since only non-zero matrix elements
contribute to an MVM operation, effective throughput in-
creases only when the number of non-zero (NNZ) elements
increases, where NNZ depends on both block size, M ×N ,
and block density, dblock. Actual throughput for a given
block is therefore dblock ×M ×N/τMV M

. Thus, to achieve
high throughput and efficiency, large and dense blocks are
generally preferable to small or sparse blocks.

The number of non-zero elements actually mapped to a
crossbar is, in practice, far less than the number of cells in
the crossbar, and the trend is for large blocks to be sparser
than small blocks. This tendency follows intuitively from
the notion that as the block size approaches the size of the
matrix, the density of the block approaches the density of
the matrix—0.37% for the densest matrix in the evaluation.

The latency of a memristive MVM operation is also
directly related to the size of a crossbar. The maximum
possible crossbar column output occurs when all N bits of
a column and all N bits of the vector slice are set to 1,
resulting in a sum-of-products of

∑N
1 1×1 = N . Therefore,

a sufficient analog to digital converter (ADC) for a crossbar
with N rows must generally have a minimum resolution of
dlog2[N +1]e bits (though this can be reduced, as shown in
Section V-B2). For the type of ADC used in the proposed
system and in prior work [8], conversion time per column
is strictly proportional to ADC resolution, which increases
with log2N where N is the number of rows, and the number
of ADC conversions per binary MVM operation is equal to
the number of columns, M . Total conversion time is thus
proportional to Mdlog2[N + 1]e.

1) Energy: Crossbar sizing strongly affects the amount
of energy used by both the array and the ADC during an
MVM operation.

ADC energy. The average power dissipation of the ADC
grows exponentially with resolution [34]–[36]. Since res-
olution is a logarithmic function of the number of rows,
N , but conversion time is proportional to resolution, ADC
energy per column conversion is approximately proportional
to N log2N . The column count, M , determines the number
of ADC conversions per MVM operation, so the total ADC
energy per operation is proportional to M ×N log2N .

Crossbar energy. Crossbar latency is defined as the
minimum amount of time during which the crossbars must
be actively pulling current in order to ensure that all output
nodes are within less than LSB

2 of their final voltages, thereby
constraining all column outputs to be within the error
tolerance range of the ADC. The worst-case path resistance
and capacitance of an M×N crossbar are both proportional
to M + N . The number of RC time constants necessary
to ensure error-free output is proportional to resolution, or

log2N . While the crossbar is active, power is proportional
to the total conductance of the crossbar, which can be found
by multiplying the number of cells, M ×N , by the average
path conductance, which is proportional to 1

M+N . Crossbar
energy for a single MVM operation grows with the product
of crossbar latency and power, and is thus found to be
proportional to (M ×N)(M +N) log2N .

2) Area: As with ADC power, ADC area also scales
exponentially with resolution [34]–[36], making average
ADC area approximately proportional to N . Crossbar area is
dominated by drivers; consequently, the total crossbar area
grows as M(M +N).

B. A Heterogeneous Crossbar Substrate

Crossbar sizing requires striking a careful balance be-
tween parallelism and energy efficiency: a crossbar must
be large enough to capture sufficient non-zero elements to
exploit parallelism, yet small enough to retain sufficient den-
sity for area and energy efficiency. By contrast to the single
crossbar size used in prior work [7], [8], [18], the proposed
system utilizes crossbars of different sizes, allowing blocks
to be mapped to the crossbars best suited to the sparsity
pattern of the matrix. This heterogeneous composition makes
the system performance robust, yielding high performance
and efficiency on most matrices without over-designing for
a particular matrix type or sparsity pattern.

The problem of performance-optimal matrix blocking is
neither new nor solved in a computationally feasible manner.
Prior work seeks to block sparse matrices while maximizing
throughput and minimizing fill-in, but focuses on block sizes
that are too small to be efficient with memristive crossbars
(12× 12 at most [15]).

1) Mapping a Matrix to the Heterogeneous
Substrate: A fast preprocessing step is proposed that ef-
ficiently maps an arbitrary matrix to the heterogeneous
collection of clusters. The matrix is partitioned into block
candidates, and for each candidate block the number of non-
zero elements captured by the block and the range of the
exponents within the block are calculated. If the exponent
range of the block falls outside of the maximum allowable
range (i.e., 117), the elements are selectively removed until
an acceptable range is attained. The number of non-zero ele-
ments remaining is then compared to a dimension-dependent
threshold; if the number of elements exceeds the threshold,
the candidate block is accepted. If the candidate block is
rejected, a smaller block size is considered and the process
repeats.

The preprocessing step considers every block size in the
system (512×512, 256×256, 128×128, and 64×64) until
each element has either been mapped to a block or found to
be unblockable. Elements that cannot be blocked efficiently
or that fall outside of the exponent range of an accepted
block are completely removed from the mapping, and are
instead processed separately by the local processor. Figure

(a) Pres Poisson sparsity (b) Pres Poisson blocking (c) Xenon1 sparsity (d) Xenon1 blocking
Figure 7. Sparsity and blocking patterns of two of the evaluated matrices.

7 shows the non-zero elements and the resulting blocking
patterns for two sparse matrices.

Since the non-zero elements in the matrix are traversed at
most one time for each block size, the worst-case complexity
of the preprocessing step is 4×NNZ. In practice, the early
discovery of good blocks brings the average-case complexity
to 1.8×NNZ.

2) Exploiting Sparsity: Though sparsity introduces chal-
lenges in terms of throughput, it also presents some oppor-
tunities for optimization.

Computational invert coding. Prior work [8] introduces
a technique for statically reducing ADC resolution require-
ments. If a crossbar column contains all 1s, the maximum
output for the column is equal to the number of rows,
N . To handle this extreme case, the ADC would require
dlog2[N + 1]e bits of resolution. Eliminating this case
reduces the ADC resolution requirement by one bit. This is
achieved by inverting the contents of a column if it contains
all 1s. To obtain a result equivalent to a computation with
a non-inverted column, the partial dot product is subtracted
from the population count of the applied vector bit slice.

We extend this technique to computational invert coding
(CIC), a computational analog to the widely used bus-invert
coding [37]. If the number of ones in a binary matrix
row is less than N

2 , the required resolution of the ADC
is again decreased by one bit. By inverting any column
mapping that would result in greater than 50% bit density, a
static maximum of N

2 1s per crossbar column is guaranteed.
Notably, if the column has exactly N

2 1s, a resolution of
log2N is still required. Since the proposed system allows
for removing arbitrary elements from a block for processing
on the local processor, this corner case can be eliminated.
Thus, for any block, even in matrices approaching 100%
density, the ADC resolution can be statically reduced to
log2[N]−1 bits. CIC also lowers the maximum conductance
of the crossbars (since at most half of the cells can be in
the RLO state), which in turn reduces crossbar energy.

ADC headstart. The ADCs that are commonly used in
memristive accelerators [7], [8] perform a binary search
over the space of possible results, with the MSb initially

set to 1. However, the maximum output of each column is
constrained by the number of ones mapped to that column.
Matrix rows tend to produce at most dlog2[drow×0.5×N]e
bits of output, assuming that 1s and 0s are equally likely.
Since the actual number of output bits is data dependent,
this tendency cannot be leveraged to statically reduce ADC
precision beyond what is attainable with CIC. Instead, the
ADC is pre-set to the maximum number of bits that can be
produced by the subsequent conversion step. This approach
allows the ADC to start from the most significant possible
output bit position, and reduces the amount of time required
to find the correct output value by an amount proportional
to the number of bits skipped. Notably, this does not affect
operation latency since reduction logic is fully synchronous
and assumes a full clock period for conversion; however, by
decreasing the time spent on conversion, the energy of the
MVM operation is reduced.

VI. PROGRAMMING THE ACCELERATOR

We focus on Krylov subspace solvers for specificity, as
they are a widely used application involving sparse MVM;
however, the proposed accelerator is not limited to Krylov
subspace solvers. These solvers are built from three com-
putational kernels: a sparse-matrix dense-vector multiply, a
dense-vector sum or AXPY (y← ax+y), and a dense-vector
dot product (z = x · y). To split the computation between
the banks, each bank is given a 1200-element section of
the solution vector x; only that bank performs updates on
the corresponding section of the solution vector and the
portions of the derived vectors. For simplicity, this restriction
is not enforced by hardware and must be followed by the
programmer for correctness.

On problems that are too large for a single accelerator, the
MVM can be split in a manner analogous to the partitioning
on GPUs: each accelerator handles a portion of the MVM,
and the accelerators synchronize between iterations.

A. Kernel Implementation

To implement Krylov subspace solvers, we implement the
three primary kernels needed for the solver.

1) Sparse MVM: The sparse MVM operation begins
by reading the vector map for each cluster. The vector
map contains a set of three-element tuples, each of which
comprises the base address of a cluster input vector, the
vector element index corresponding to that base address,
and the size of the cluster. Since the vector applied to each
cluster is contiguous, the tuple is used to compute and load
all of the vector elements into the appropriate vector buffer.
Thereafter, a start signal is written to a cluster status register
and the computation begins. Since larger clusters tend to
have a higher latency, the vector map entries are ordered by
cluster size.

Once all cluster operations have started, the processor
begins operating on the non-blocked entries. As noted in
the previous section, some values within the sparse matrix
are not suitable for mapping onto memristive hardware
either because they cannot be blocked at a sufficient density,
or because they would exceed the exponent range. These
remaining values are stored in the compressed sparse row
format [15].

When a cluster completes, an interrupt is raised and
serviced by an interrupt service routine running on the local
processor. Once all clusters signal completion and the local
processor finishes processing the non-blocked elements, the
bank has completed its portion of the sparse MVM. The local
processors for different banks rely on a barrier synchroniza-
tion scheme to determine when the entire sparse MVM is
complete.

2) Vector Dot Product: To perform a vector dot product,
each processor computes the relevant dot product from
its own vector elements. Notably, due to vector element
ownership of the solution vector x and all of the derived
vectors, the dot product is performed using only those
values that belong to a local processor. Once the processor
computes its local dot product, the value is written back
to shared memory for all other banks to see. Each bank
computes the final product from the set of bank dot products
individually to simplify synchronization.

3) AXPY: The AXPY operation is the simplest kernel
since it can be performed purely locally. Each vector element
is loaded, modified, and written back. Barrier synchroniza-
tion is used to determine completion across all banks.

VII. EXPERIMENTAL SETUP

We develop a parameterized and modular system model
to evaluate throughput, energy efficiency, and area. Key
parameters of the simulated system are listed in Table I.

A. Circuits and Devices

We model all of the CMOS based periphery at the 15nm
technology node, using process parameters and design rules
from FreePDK15 [38] coupled with the ASU Predictive
Technology Model (PTM) [39]. TaOx memristor cells based
on [40] are used, with linearity and dynamic range as

reported by [18]. During computation, cells are modeled as
resistors, with resistance determined either by a statistical
approach considering block density or actual mapped bit
values, depending on whether the model is being evaluated
as part of a design-space exploration or to characterize
performance with a particular matrix. The interconnect is
modeled with a conservative lumped RC approach, using
the wire capacitance parameters provided by the ASU PTM,
derived from [41]. To reduce path distance and latency, we
split the crossbars and place the drivers in the middle, rather
than at the periphery, similarly to the double-sided ground
biasing technique from [42].

Table I
ACCELERATOR CONFIGURATION

System (128) banks, double-precision floating point, fclk =
1.2GHz, 15nm process, VDD = 0.80V

Bank (2) × 512 × 512 clusters, (4) × 256 × 256 clusters,
(6)×128×128, (8)×64×64 clusters, 1 LEON core

Cluster 127 bit slice crossbars
Crossbar N ×N cells, (log2[N]− 1)-bit pipelined SAR ADC,

2N drivers
Cell [18], [40] TaOx, Ron = 2kΩ,Roff = 3MΩ, Vread = 0.2V,

Vset = −2.6V, Vreset = 2.6V, Ewrite = 3.91nJ,
Twrite = 50.88ns

The peripheral circuitry includes 2N driver circuits, based
on [43] and sized such that they are sufficient to source/sink
the maximum current required to program and read the
memristors. Also included are N sample-and-hold circuits
based on [44], with power and area scaled for the required
sampling frequency and precision.

A 1.2 GHz 10-bit pipelined SAR ADC [34] is used as a
reference design point. 1.2 GHz is chosen as the operating
frequency of the ADC in order to maximize throughput and
efficiency while maintaining acceptable ADC signal to noise
and distortion ratio (SNDR) at our supply voltage. Area,
power, and the internal conversion time of each individual
crossbar’s ADC are scaled based on resolution, as discussed
in Section V-A. Approximately 7% of the reported ADC
power scales exponentially with resolution, with the remain-
der of power either scaling linearly or remaining constant,
and 20% of the total power is assumed to be static based
on the analysis reported in [34]. Similarly, approximately
23% of the reported area scales exponentially (due to the
capacitive DAC and the track-and-hold circuit), and the
remainder either scales linearly or remains constant. We hold
the conversion time of the ADC constant with respect to
resolution, rounding up to the nearest integral clock period.
During the slack portion of the clock period (i.e., the time
between conversions), we reduce the ADC power dissipation
to its static power.

The local processors are implemented with the open-
source LEON3 core [45]. Since the open-source version
of LEON3 does not include the netlist for the FPU for
synthesis, we modify the FPU wrapper to the fused multiply
add (FMA) timings for an FMA unit generated by FP-

Table II
EVALUATED MATRICES, SPD MATRICES ON TOP.

Matrix NNZs Rows NNZ/Row Blocked
2cubes sphere 1647264 101492 16.2 49.7%
crystm03 583770 24696 23.6 94.7%
finan512 596992 74752 7.9 46.7%
G2 circuit 726674 150102 4.5 60.9%
nasasrb 2677324 54870 49.8 99.1%
Pres Poisson 715804 14822 48.3 96.4%
qa8fm 1660579 66127 25.1 92.8%
ship 001 3896496 34920 111.6 66.4%
thermomech TC 711558 102158 6.8 0.8%
Trefethen 20000 554466 20000 27.7 63.3%
ASIC 100K 940621 99340 9.5 60.9%
bcircuit 375558 68902 5.4 64.9%
epb3 463625 84617 5.5 72.2%
GaAsH6 3381809 61349 55.12 69.2%
ns3Da 1679599 20414 82 3.2%
Si34H36 5156379 97569 52.8 53.7%
torso2 1033473 115697 8.9 98.1%
venkat25 1717792 62424 27.5 79.8%
wang3 177168 26064 6.8 64.6%
xenon1 1181120 48600 24.3 81.0%

GEN [46]. The LEON3 core, FMA, and in-cluster reduction
network are synthesized using the NanGate 15nm Open
Cell Library [47] with the Synopsys Design Compiler [48].
SRAM buffers within each cluster and the eDRAM mem-
ory are modeled using CACTI7 [49] using 14nm eDRAM
parameters from [50].

B. Architecture

We compare against an nVidia Tesla P100 GPU accelera-
tor modeled using GPGPUSim [51] and GPGPUWattch [52].
To evaluate the performance of the LEON3 based local
processors, we implement CG and BiCG-STAB in C and
compile the implementations using the LEON3 Bare C
Compiler with timers around each kernel call. Since all bank
microprocessors must synchronize during each iteration, we
evaluate the latency of the bank microprocessor with the
largest number of unblocked elements.

In the worst case, the preprocessing step touches every
non-zero in the matrix four times, which is comparable to
performing four MVM operations. Thus, we conservatively
assume that preprocessing takes time equivalent to four
MVM operations on the baseline system.

C. Algorithms

We evaluate the proposed accelerator on 20 matrices from
the SuiteSparse matrix collection [14] using CG for sym-
metric positive definite matrices (SPD) and BiCG-STAB for
non-SPD matrices. The matrices were selected to showcase
a range of matrix structures, sizes, and densities across a
variety of applications. When available, we use the b vector
provided by the collection; when b is unavailable we use a
b vector of all 1s as in prior work [53].

The solvers running on the proposed accelerator converge
in the same number of iterations as they do when running

10.3	

0.1	

1	

10	

100	

na
sa
sr
b	

Pr
es
_P

	
2c
ub

es
	

qa
8f
m
	

fin
an
	

Tr
ef
e	

sh
ip
	

cr
ys
tm

	
th
er
m
	

G2
	

AS
IC
	

bc
irc
ui
t	

ep
b3

	
Ga

As
H6

	
ns
3D

a	
Si
34
H3

6	
to
rs
o2

	
ve
nk
at
	

w
an
g3
	

xe
no

n1
	

G-
M
EA

N
		S

pe
ed

up
	o
ve
r	G

PU
		

Figure 8. Speedup over the GPU baseline.

on the GPU, since both systems perform computation at the
same level of precision.

VIII. EVALUATION

We evaluate the system performance, energy, area, and
robustness to different sources of error.

A. Execution Time

Figure 8 shows that the accelerator achieves an average
speedup of 10.3× as compared to the GPU baseline across
the set of 20 matrices. One important insight from these
results is that the average number of non-zeros per matrix
row is a poor proxy for potential speedup. The matrix with
the greatest speedup in the dataset (torso2) has just 8.9 NNZ
per matrix row and the two quantum chemistry matrices
(GaSsH6 and Si34H36) have more than 50 NNZ per row,
showing above-average but not exceptional speedup due to
their lower blocking efficiencies (i.e., the percent of the non-
zeros that are blocked): 69% and 53%, respectively. Since
each bank microprocessor is designed to work in conjunction
with its clusters, matrices with fewer rows perform worse
than larger matrices at the same blocking efficiency. As
expected, blocking efficiency is the most reliable predictor
of speedup.

Notably in Table II, there are two matrices that are effec-
tively unblocked by the proposed preprocessing step, ther-
motech TC and ns3Da, with respective blocking efficiencies
of 0.8% and 3.2%. Since the accelerator is optimized for in-
situ rather than digital MVM, and since the majority of the
elements in these two matrices cannot be mapped to the
proposed heterogeneous substrate, the accelerator is more
than an order of magnitude less efficient than the GPU
baseline on these matrices. Rather than attempt to perform
MVM on matrices so clearly ill-suited to the accelerator,
we assume that the proposed accelerator co-exists with a
GPU in the same node, and that the GPU may be used
for the rare matrices which do not block effectively. Since
the blocking algorithm has a worst-case performance of
four MVM operations (Section V-B1), and since the actual
complexity reaches the worst case if and when the matrix
cannot be blocked, we can choose whether to perform the
computation on the accelerator or the GPU after the blocking
has completed. This results in a performance loss of less than

0.092	

1.E-02	

1.E-01	

1.E+00	

na
sa
sr
b	

Pr
es
_P

	
2c
ub

es
	

qa
8f
m
	

fin
an
	

Tr
ef
e	

sh
ip
	

cr
ys
tm

	
th
er
m
	

G2
	

AS
IC
	

bc
irc
ui
t	

ep
b3

	
Ga

As
H6

	
ns
3D

a	
Si
34
H3

6	
to
rs
o2

	
ve
nk
at
	

w
an
g3
	

xe
no

n1
	

G-
M
EA

N
	

En
er
gy
	N
or
m
al
iz
ed

	to
	G
PU

	

Figure 9. Accelerator energy consumption normalized to the GPU baseline.

3% for both matrices, far better than if the accelerator were
used directly.

B. Energy Consumption

Energy consumption results are shown in Figure 9. To-
tal energy consumption is improved by 14.2× on the 18
matrices executed on the accelerator, and by 10.9× over
the entire 20-matrix dataset. The impacts of differing ex-
ponent ranges can be seen in the energy results. Notably,
the nasasrb matrix has a 3% higher blocking efficiency
than Pres Poisson; however, Pres Poisson shows nearly
twice the improvement in energy dissipation; this is due
to the much narrower exponent range of Pres Poisson.
Pres Poisson never requires more than 14 bits of padding
for storage, which also indicates a much narrower dynamic
range for the computation, and by extension fewer vector
bit slices that are needed per cluster. By contrast, nasasrb
has multiple blocks with excluded elements (due to those
elements requiring greater than 117 bits), and in general
the average number of stored bits per cluster is 107 (30
more bits than the worst block of Pres Poisson). This strong
dependence on the exponent range indicates a potential
benefit of the fixed-point computation over floating point.
As discussed in Section IV-B, floating point is designed for
broad compatibility and exceeds the requirements of many
applications. By operating on fixed-point representations of
data for much of the computation, the accelerator implicitly
creates a problem-specific subset of the floating-point format
with significant performance benefits, without discarding any
information that would cause the final result to differ from
that of an end-to-end floating-point calculation.

C. Area Footprint

The area footprint of the accelerator is computed using
the area model described in Section VII-A. The overall
system area for the 128-bank system described above is
539mm2, which is lower than the 610mm2 die size of the
baseline Nvidia Tesla P100 GPU [54]. Notably, unlike in
prior work on memristive accelerators, the crossbars and
peripheral circuitry are the dominant area consumer—rather
than the ADCs—with a total of 54.1% of total overall cluster
area. This is due to two important differences from prior
work: 1) due to computational invert coding (Section V-B2),

Table III
AREA, ENERGY, AND LATENCY OF DIFFERENT CROSSBAR SIZES

(INCLUDES THE ADC).

Size Area [mm2] Energy [pJ] Latency [nsec]
64 0.00078 28.0 53.3
128 0.00103 65.2 107
256 0.00162 150 213
512 0.00352 342 427

0%	

5%	

10%	

15%	

20%	

na
sa
sr
b	

Pr
es
_P

	
2c
ub

es
	

qa
8f
m
	

fin
an
	

Tr
ef
e	

sh
ip
	

cr
ys
tm

	
th
er
m
	

G2
	

AS
IC
	

bc
irc
ui
t	

ep
b3

	
Ga

As
H6

	
ns
3D

a	
Si
34
H3

6	
to
rs
o2

	
ve
nk
at
	

w
an
g3
	

xe
no

n1
	

Ac
ce
le
ra
to
r	C

om
pu

ta
tio

n	
	

O
ve
rh
ea
d	

Write	Time	 Preprocessing	Time	

Figure 10. Overhead of preprocessing and write time as a percent of total
solve time on the accelerator.

the ADC precision can be reduced by one bit, which has an
exponential effect on ADC area; and 2) the wider operands
that propagate through the reduction network. The per-bank
processors and global memory buffer consume 13.6% of the
total system area. This result suggests that a more powerful
processor than the LEON3 core may be integrated based on
application demands without substantially increasing system
area. Table III summarizes the area as well as the latency
and energy characteristics for different crossbar sizes used
in different clusters.

D. Initialization Overhead

Figure 10 shows the overhead of setting up the itera-
tive computation, including matrix preprocessing time and
programming time, normalized to the entire solve time
of each linear system on the accelerator. Since iterative
algorithms take thousands of iterations to converge, the
overhead of writing is effectively amortized, leading to
an overhead of less than 20% across the entire matrix
set and generally falling as the size of the linear system
increases. By extension, the number of iterations required
to converge increases faster than the write requirements of
the array. For large linear systems (the most likely use case
of the proposed accelerator), the overhead is typically less
than 4% of the total solver runtime. The overhead may be
even less in practice as multiple time steps are generally
simulated to examine the time-evolution of the linear system.
In these time-stepped computations, only a subset of non-
zeros change each step, and the matrix structure is typically
preserved, requiring minimal re-processing.

E. System Endurance

Although memristive devices have finite switching en-
durance, the iterative nature of the algorithms allows a single
matrix to be programmed once and reused throughout the
computation. Even under a conservative set of assumptions

(a) ns3Da sparsity (b) ns3Da blocking
Figure 11. Sparsity and blocking patterns of ns3Da.

where each array is fully rewritten for each new matrix,
ignoring both the sparsity of the blocks and the time step
behavior mentioned above, the system lifetime is suffi-
cient: given a memristive device with a conservative 109

writes [55]–[57], the total system lifetime is over 100 years,
assuming the system runs constantly and a new matrix is
fully rewritten between solves.

F. Understanding Difficult-to-Block Matrices

Figure 11 shows the non-zero element distribution and the
blocking pattern for ns3Da, a matrix with a particularly poor
blocking efficiency. The figure shows that, despite the high
relative density of the matrix, the values do not form dense
sub-blocks that can be blocked efficiently. Instead, the values
are distributed relatively uniformly over the matrix, with the
third-highest NNZs per matrix row in the evaluated dataset.
Figure 7 shows the non-zero distribution of two matrices that
can be blocked effectively, Pres Poisson and Xenon1; the
non-zeros of both matrices are clustered primarily around
the diagonal. An analysis of the blocks formed on ns3Da
shows that most of the formed blocks capture patterns with
non-zeros separated by approximately 30 elements: 2 per
matrix block-row in 64 blocks, and 4 per matrix block-row
in 128 blocks. This suggests that even if ns3Da were to
be blocked more efficiently, the effective speedup would be
constrained by the limited current summation from having
few blocks per matrix row.

G. Sensitivity to Device Characteristics

Since scientific computing emphasizes high precision,
we analyze the effects of device characteristics on system
accuracy and convergence behavior.

Dynamic range. We re-evaluate the convergence behavior
with various cell ranges (i.e., on/off state ratios) to determine
how the system behaves when the states are closer together
or farther apart. Figure 12 shows the relative iteration
count at various configuration points. The results show
effectively no sensitivity to dynamic range for single-bit
cells. With two-bit cells, the relatively low dynamic range
results in some computational error, as the cell states are
not sufficiently spread to tolerate the sources of error in

0	
2	
4	
6	
8	

B=1;	
D=0.75K	

B=1;	
D=1.5K	

B=1;	
D=3K	

B=2;	
D=0.75K	

B=2;	
D=1.5K	

B=2;	
D=3K	

N
or
m
al
iz
ed

	
Ite

ra
.o

n	
Co

un
t	

Min	 Mean	 Max	

Figure 12. Iteration count as a function of bits per cell and dynamic
range, normalized to 1-bit cells with Roff/Ron = 1500. The minimum,
maximum, and the mean iteration counts are reported over 100 Monte-Carlo
simulation experiments.

Figure 13. Iteration count as a function of bits per cell and programming
error, normalized to 1-bit cells with no programming error. The minimum,
maximum, and the mean iteration counts are reported over 100 Monte-Carlo
simulation experiments.

current summation. This, in turn, introduces error into the
computation, which tends to hinder convergence rates.

Programming precision. We re-evaluate the convergence
behavior with and without cell programming errors to de-
termine how results are affected by non-ideal programming.
The results show virtually no sensitivity to programming
error for single-bit cells until the programming error reaches
5%, well within the achievable programming precision re-
ported in the literature [58]. Again, the general dependence
becomes stronger as the number of bits per cell is increased.
High programming error with the same tolerance introduces
errors into the computation, hindering convergence.

IX. CONCLUSIONS

Previous work with memristive systems has been re-
stricted to low-precision, error-prone, fixed-point computa-
tion, taking advantage of machine learning workloads that
demand fidelity but not precision. We have presented the
first correct implementation of a double-precision floating-
point compute unit based on a memristive substrate. The
innovations presented here take advantage of insights that
allow the system to achieve a 10.3× throughput improve-
ment and a 10.9× reduction in energy consumption over a
GPU baseline when executing iterative solvers. The potential
for such a system in scientific computing, where iterative
solvers are ubiquitous, is especially promising.

ACKNOWLEDGMENT

This work was supported in part by NSF grant CCF-
1533762.

REFERENCES

[1] F. Pop, “High performance numerical computing for high
energy physics: a new challenge for big data science,” AAdv.
High Energy Phys., vol. 2014, 2014.

[2] R. A. Pielke Sr, Mesoscale meteorological modeling, 2nd ed.
Academic press, 2013.

[3] B. Schölkopf, K. Tsuda, and J.-P. Vert, Kernel methods in
computational biology, 1st ed. MIT press, 2004.

[4] L. Maliar and S. Maliar, “Numerical methods for large-scale
dynamic economic models,” 2014.

[5] M. Vogelsberger, S. Genel, V. Springel, P. Torrey, D. Sijacki,
D. Xu, G. Snyder, S. Bird, D. Nelson, and L. Hernquist,
“Properties of galaxies reproduced by a hydrodynamic simu-
lation,” Nature, vol. 509, pp. 177–82, May 2014.

[6] P. Messina. (2017, February) The U.S. D.O.E.
exascale computing project—goals and challenges.
https://www.nist.gov/sites/default/files/documents/2017/02/
21/messina nist 20170214.final .pdf. [Online]. Available:
”https://www.nist.gov/sites/default/files/documents/2017/02/
21/messina nist 20170214.final .pdf”

[7] M. N. Bojnordi and E. Ipek, “Memristive boltzmann machine:
A hardware accelerator for combinatorial optimization and
deep learning,” in Intl. Symp. on High Performance Computer
Architecture (HPCA), March 2016.

[8] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian,
J. P. Strachan, M. Hu, R. S. Williams, and V. Srikumar,
“ISAAC: A convolutional neural network accelerator with
in-situ analog arithmetic in crossbars,” in Intl. Symp. on
Computer Architecture (ISCA), June 2016.

[9] P. Chi, S. Li, S. Li, T. Zhang, J. Zhao, Y. Liu, Y. Wang,
and Y. Xie, “PRIME: A novel processing-in-memory archi-
tecture for neural network computation in ReRAM-based
main memory,” in Intl. Symp. on High Performance Computer
Architecture (HPCA), June 2016.

[10] L. Song, X. Qian, H. Li, and Y. Chen, “PipeLayer: A
pipelined ReRAM-based accelerator for deep learning,” in
Intl. Symp. on High Performance Computer Architecture
(HPCA), Feb. 2017.

[11] L. Song, Y. Zhuo, X. Qian, H. Li, and Y. Chen, “GraphR:
Accelerating graph processing using ReRAM,” Feb. 2017.

[12] G. Kestor, R. Gioiosa, D. J. Kerbyson, and A. Hoisie,
“Quantifying the energy cost of data movement in scientific
applications,” in Intl. Symp. on Workload Characterization
(IISWC), Sept. 2013.

[13] J. Hauser. (2002) SoftFloat. http://www.jhauser.us/arithmetic/
SoftFloat.html. [Online]. Available: ”http://www.jhauser.us/
arithmetic/SoftFloat.html”

[14] T. A. Davis and Y. Hu, “The university of florida sparse matrix
collection,” ACM Transactions on Math Softwware (TOMS),
vol. 38, no. 1, pp. 1:1–1:25, Dec. 2011.

[15] R. Vuduc, “Automatic performance tuning of sparse matrix
kernels,” Ph.D. dissertation, 2003.

[16] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li,
T. Chen, Z. Xu, N. Sun, and O. Temam, “DaDianNao:
A machine-learning supercomputer,” in Intl. Symp. on on
Microarchitecture (MICRO), Dec. 2014.

[17] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal
et al., “In-datacenter performance analysis of a tensor pro-
cessing unit,” in Intl. Symp. on on Computer Architecture
(ISCA), June 2017.

[18] M. Hu, J. P. Strachan, Z. Li, E. M. Grafals, N. Davila,
C. Graves, S. Lam, N. Ge, J. J. Yang, and R. S. Williams,
“Dot-product engine for neuromorphic computing: Program-
ming 1T1M crossbar to accelerate matrix-vector multiplica-
tion,” in Design Automation Conference (DAC), June 2016.

[19] Y. Saad, Iterative Methods for Sparse Linear Systems, 3rd ed.
SIAM, 2003.

[20] J. J. Dongarra, P. Luszczek, and A. Petitet, “The LINPACK
benchmark: Past, present, and future.” Concurrency and Com-
putation: Practice and Experience, vol. 15, pp. 803–820,
2003.

[21] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients
for solving linear systems, 1952, vol. 49, no. 6.

[22] H. A. Van der Vorst, “Bi-CGSTAB: A fast and smoothly
converging variant of Bi-CG for the solution of nonsymmetric
linear systems,” SIAM Journal on scientific and Statistical
Computing (SISC), vol. 13, no. 2, pp. 631–644, 1992.

[23] Y. Saad and M. H. Schultz, “GMRES: A generalized minimal
residual algorithm for solving nonsymmetric linear systems,”
SIAM Journal on scientific and Statistical Computing (SISC),
vol. 7, no. 3, pp. 856–869, July 1986.

[24] J. Kung, Y. Long, D. Kim, and S. Mukhopadhyay, “A
programmable hardware accelerator for simulating dynamical
systems,” in Intl. Symp. on Computer Architecture (ISCA),
June 2017.

[25] Q. Zhu, T. Graf, H. E. Sumbul, L. Pileggi, and F. Franchetti,
“Accelerating sparse matrix-matrix multiplication with 3d-
stacked logic-in-memory hardware,” in 2013 IEEE High
Performance Extreme Computing Conference (HPEC), Sept
2013.

[26] S. Kestur, J. D. Davis, and E. S. Chung, “Towards a univer-
sal FPGA matrix-vector multiplication architecture,” in Intl.
Symp. on Field-Programmable Custom Computing Machines
(FCCM), May 2012.

[27] J. Fowers, K. Ovtcharov, K. Strauss, E. S. Chung, and
G. Stitt, “A high memory bandwidth FPGA accelerator for
sparse matrix-vector multiplication,” in Intl. Symp. on Field-
Programmable Custom Computing Machines (FCCM), May
2014.

[28] R. Dorrance, F. Ren, and D. Marković, “A scalable
sparse matrix-vector multiplication kernel for energy-efficient
sparse-blas on FPGAs,” in ACM/SIGDA International Sym-
posium on Field-programmable Gate Arrays (FPGA), Feb.
2014.

https://www.nist.gov/sites/default/files/documents/2017/02/21/messina_nist_20170214.final_.pdf
https://www.nist.gov/sites/default/files/documents/2017/02/21/messina_nist_20170214.final_.pdf
"https://www.nist.gov/sites/default/files/documents/2017/02/21/messina_nist_20170214.final_.pdf"
"https://www.nist.gov/sites/default/files/documents/2017/02/21/messina_nist_20170214.final_.pdf"
http://www.jhauser.us/arithmetic/SoftFloat.html
http://www.jhauser.us/arithmetic/SoftFloat.html
"http://www.jhauser.us/arithmetic/SoftFloat.html"
"http://www.jhauser.us/arithmetic/SoftFloat.html"

[29] B. Feinberg, S. Wang, and E. Ipek, “Making memristive
neural net accelerators reliable,” in Intl. Symp. on High
Performance Computer Architecture (HPCA), Feb 2018.

[30] D. H. Bailey, “High-precision floating-point arithmetic in
scientific computation,” Computing in science & engineering,
vol. 7, no. 3, pp. 54–61, 2005.

[31] D. Zuras, M. Cowlishaw, A. Aiken, M. Applegate, D. Bailey,
S. Bass, D. Bhandarkar, M. Bhat, D. Bindel, S. Boldo et al.,
“Ieee standard for floating-point arithmetic,” IEEE Std 754-
2008, pp. 1–70, 2008.

[32] L. V. Allis, “Searching for solutions in games and artificial
intelligence,” 1994.

[33] N. Whitehead and A. Fit-Florea, “Precision & performance:
Floating point and IEEE 754 compliance for nvidia gpus,”
Nvidia, Tech. Rep., 2011.

[34] L. Kull, D. Luu, C. Menolfi, M. Braendli, P. A. Francese,
T. Morf, M. Kossel, H. Yueksel, A. Cevrero, I. Ozkaya,
and T. Toifl, “28.5 a 10b 1.5gs/s pipelined-SAR ADC with
background second-stage common-mode regulation and offset
calibration in 14nm CMOS FinFET,” in Intl. Solid-State
Circuits Conference (ISSCC), Feb 2017, pp. 474–475.

[35] L. Kull, T. Toifl, M. Schmatz, P. A. Francese, C. Menolfi,
M. Brandli, M. Kossel, T. Morf, T. M. Andersen, and
Y. Leblebici, “A 3.1 mw 8b 1.2 GS/s single-channel asyn-
chronous SAR ADC with alternate comparators for enhanced
speed in 32 nm digital SOI CMOS,” IEEE Journal of Solid-
State Circuits, vol. 48, no. 12, pp. 3049–3058, 2013.

[36] M. Saberi, R. Lotfi, K. Mafinezhad, and W. A. Serdijn,
“Analysis of power consumption and linearity in capacitive
digital-to-analog converters used in successive approximation
adcs,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 58, no. 8, pp. 1736–1748, 2011.

[37] M. R. Stan and W. P. Burleson, “Bus-invert coding for
low-power I/O,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 3, no. 1, pp. 49–58, 1995.

[38] K. Bhanushali and W. R. Davis, “FreePDK15: An open-
source predictive process design kit for 15nm FinFET tech-
nology,” in Intl. Symp. on on Physical Design (ISPD), March
2015.

[39] Predictive technology model (PTM). http://ptm.asu.edu/.
[Online]. Available: http://ptm.asu.edu/

[40] D. Niu, C. Xu, N. Muralimanohar, N. P. Jouppi, and Y. Xie,
“Design of cross-point metal-oxide ReRAM emphasizing
reliability and cost,” in Intl Conference on Computer-Aided
Design (ICCAD), Nov. 2013.

[41] S.-C. Wong, G.-Y. Lee, and D.-J. Ma, “Modeling of inter-
connect capacitance, delay, and crosstalk in VLSI,” IEEE
Transactions on semiconductor manufacturing, vol. 13, no. 1,
pp. 108–111, 2000.

[42] C. Xu, D. Niu, N. Muralimanohar, R. Balasubramonian,
T. Zhang, S. Yu, and Y. Xie, “Overcoming the challenges
of crossbar resistive memory architectures,” in ”Intl. Symp.
on High Performance Computer Architecture (HPCA)”, Feb
2015.

[43] C. Yakopcic and T. Taha, “Model for maximum crossbar size
based on input driver impedance,” Electronics Letters, vol. 52,
no. 1, pp. 25–27, 2015.

[44] M. O’Halloran and R. Sarpeshkar, “A 10-nw 12-bit accurate
analog storage cell with 10-aa leakage,” IEEE Journal of
Solid-State Circuits, vol. 39, no. 11, pp. 1985–1996, 2004.

[45] Leon3/GRLIB. http://www.gaisler.com/index.php/downloads/
leongrlib. [Online]. Available: http://www.gaisler.com/index.
php/downloads/leongrlib

[46] S. Galal, O. Shacham, J. S. B. II, J. Pu, A. Vassiliev, and
M. Horowitz, “FPU generator for design space exploration,”
in IEEE Symposium on Computer Arithmetic (ARITH), April
2013.

[47] M. Martins, J. M. Matos, R. P. Ribas, A. Reis, G. Schlinker,
L. Rech, and J. Michelsen, “Open cell library in 15nm
FreePDK technology,” in Intl. Symp. on Physical Design
(ISPD), March 2015.

[48] Synopsys, “Synopsys Design Compiler User Guide,”
http://www.synopsys.com/\Tools/Implementation/
RTLSynthesis/DCUltra/Pages/.

[49] R. Balasubramonian, A. B. Kahng, N. Muralimanohar,
A. Shafiee, and V. Srinivas, “CACTI 7: New tools for inter-
connect exploration in innovative off-chip memories,” ACM
Transactions on Architecture and Code Optimization (TACO),
vol. 14, no. 2, pp. 14:1–14:25, June 2017.

[50] G. Fredeman, D. W. Plass, A. Mathews, J. Viraraghavan,
K. Reyer, T. J. Knips, T. Miller, E. L. Gerhard, D. Kannam-
badi, C. Paone, D. Lee, D. J. Rainey, M. Sperling, M. Whalen,
S. Burns, R. R. Tummuru, H. Ho, A. Cestero, N. Arnold,
B. A. Khan, T. Kirihata, and S. S. Iyer, “A 14 nm 1.1 mb
embedded DRAM macro with 1 ns access,” IEEE Journal of
Solid-State Circuits, vol. 51, no. 1, pp. 230–239, Jan 2016.

[51] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M.
Aamodt, “Analyzing CUDA workloads using a detailed GPU
simulator,” April 2009.

[52] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim,
T. M. Aamodt, and V. J. Reddi, “GPUWattch: Enabling en-
ergy optimizations in GPGPUs,” in Intl. Symp. on Computer
Architecture (ISCA), June 2013.

[53] H. Anzt, J. Dongarra, M. Kreutzer, G. Wellein, and M. Khler,
“Efficiency of general krylov methods on GPUs – an exper-
imental study,” in Intl. Parallel and Distributed Processing
Symposium Workshops (IPDPSW), May 2016.

[54] “Nvidia tesla P100,” NVIDIA Corporation, Tech. Rep. WP-
08019-001 v01.1, 2016.

[55] Z. Wei, Y. Kanzawa, K. Arita, Y. Katoh, K. Kawai, S. Mu-
raoka, S. Mitani, S. Fujii, K. Katayama, M. Iijima et al.,
“Highly reliable TaOx ReRAM and direct evidence of redox
reaction mechanism,” in Electron Devices Meeting, 2008.
IEDM 2008. IEEE International. IEEE, 2008, pp. 1–4.

[56] J. J. Yang, M.-X. Zhang, J. P. Strachan, F. Miao, M. D. Pick-
ett, R. D. Kelley, G. Medeiros-Ribeiro, and R. S. Williams,
“High switching endurance in TaOx memristive devices,”
Applied Physics Letters, vol. 97, no. 23, p. 232102, 2010.

http://ptm.asu.edu/
http://ptm.asu.edu/
http://www.gaisler.com/index.php/downloads/leongrlib
http://www.gaisler.com/index.php/downloads/leongrlib
http://www.gaisler.com/index.php/downloads/leongrlib
http://www.gaisler.com/index.php/downloads/leongrlib
http://www.synopsys.com/\Tools/Implementation/RTLSynthesis/DCUltra/Pages/
http://www.synopsys.com/\Tools/Implementation/RTLSynthesis/DCUltra/Pages/

[57] C.-W. Hsu, I.-T. Wang, C.-L. Lo, M.-C. Chiang, W.-Y. Jang,
C.-H. Lin, and T.-H. Hou, “Self-rectifying bipolar TaOx/TiO2
RRAM with superior endurance over 1012 cycles for 3d high-
density storage-class memory.”

[58] F. Alibart, L. Gao, B. D. Hoskins, and D. B. Strukov, “High
precision tuning of state for memristive devices by adaptable
variation-tolerant algorithm,” Nanotechnology, vol. 23, no. 7,
Jan. 2012.

